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Abstract

We study whether the presence of multiple, simultaneous nucleation sources is as-
sociated with changes in the temporal regularity of acoustic nucleation rhythms. Using
hand-labeled accelerometer data from bench-top experiments designed to inform cryo-
genic propellant management for space applications, we compare the dispersion of
inter-nucleation intervals across single-source and concurrent-source conditions. Non-
parametric comparisons (Mann–Whitney U) indicate larger dispersion under concur-
rency for several pre-specified contrasts at the α = 0.05 level. We frame these results
as associations that provide statistical support for a thermal-recovery mechanism, in
which neighboring detachment events intermittently cool the wall and broaden timing
variability. The analysis is observational and pre-specified; exact statistics are reported
without post-hoc reprocessing, and limitations for inference and generalization are de-
tailed.

Keywords: event-time analysis, nonparametric inference, dispersion of inter-
event intervals, effect size estimation, bootstrap confidence intervals, thermal
cross-talk

1 Introduction

Effective Cryogenic Fuel Management (CFM) is a critical enabler for long-duration space ex-
ploration, where the storage and transfer of volatile propellants in low-gravity environments
present significant engineering challenges [1, 2]. A key operational risk arises from local-
ized heat leaks into propellant tanks, which can induce unwanted incipient boiling. Such
phenomena can lead to inefficient propellant utilization, unpredictable tank pressure fluc-
tuations, and potentially hazardous thermal instabilities. Consequently, developing passive,
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non-intrusive diagnostic techniques to detect and characterize the earliest stages of boiling
is essential for ensuring the safety and reliability of future space systems.

Acoustic sensing, using externally mounted accelerometers, offers a promising modality
for this purpose. Foundational work by Khasin et al. [1] established an experimental frame-
work to link acoustic signatures to underlying boiling physics. Using superheated water in
a smooth-walled vessel to emulate cryogenic conditions, they identified two distinct boiling
regimes: a stochastic ”random boiling” pattern, attributed to the activation of residual gas
nuclei, and a highly periodic ”rhythmic boiling” pattern, which emerged under conditions
of high superheat. They proposed a comprehensive physical model for rhythmic boiling,
positing that it originates from heterogeneous nucleation on microscopic hydrophobic con-
tamination spots on the vessel wall.

The periodicity of this rhythmic boiling is explained by a thermal-recovery limit cycle. In
this model, (i) a vapor bubble nucleates and grows at a specific hot site; (ii) upon detachment,
cooler bulk liquid rushes in, locally quenching the site’s temperature; and (iii) a ”waiting
time” governed by thermal diffusion ensues as the site reheats to the nucleation threshold,
at which point the cycle repeats. The duration of this thermal recovery, estimated to be on
the order of seconds, sets the fundamental period of the acoustic rhythm [3].

This study builds directly upon that physical model by investigating a key, testable con-
sequence: if a site’s rhythm is governed by a sensitive local thermal process, it should be
susceptible to thermal perturbations from its surroundings. The presence of a second, con-
currently active nucleation site provides a natural experiment for testing this. A detachment
event at a neighboring site can be viewed as an external thermal disturbance, which we
hypothesize will interfere with the primary site’s regular recovery cycle - a thermal ”cross-
talk” hypothesis. We therefore ask the specific question: is the presence of an additional
active boiling source associated with greater temporal irregularity in a given site’s nucleation
rhythm? Guided by the thermal-recovery model, we had formulated the directional hypothe-
sis that concurrency increases the dispersion of inter-event intervals. Preliminary analyses of
the dataset from [1], reported in [4], provided an initial evidence supporting the hypothesis
of thermal cross-talk between nucleation sites. The present study subjects that pre-analysis
hypothesis to a formal statistical evaluation on the same dataset. By comparing the disper-
sion of inter-event timings between single-source and concurrent-source conditions, this work
provides a targeted statistical test of the thermal crosstalk predicted by the recovery-cycle
model.

2 Dataset

2.1 Experimental Setup

We analyze 441 short-duration experiments (1 s to 30 s) from the testbed developed by Khasin
et al. [1]. Each run consists of a heated spot on a vessel containing degassed water, with two
wall-mounted accelerometers sampling at 10 kHz (Fig. 1). A controlled heat input elicits
nucleation activity, which was correlated with high-speed video in the original study to
validate the acoustic signatures. One accelerometer data channel was used to maintain
continuity with the pre-specified analysis pipeline.
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Figure 1: Schematic of the experimental arrangement with external accelerometers, adapted
from [1].

2.2 Signal and Labels

Raw acceleration traces show sparse, high-amplitude transients corresponding to nucle-
ation/collapse events (Fig. 2). Events were hand-labeled using a Python Dash interface
to ensure temporal precision.

2.3 Within-Run Site Identification by Amplitude

In dual-source runs, we distinguish two rhythmic sources via within-run amplitude ranking:
the Dominant rhythm is the site producing consistently larger peaks; the Lesser rhythm
produces smaller peaks. We use amplitude as a proxy for site identity only within a run, and
do not compare absolute amplitudes across runs due to geometry-dependent propagation.

3 Methods

3.1 Estimand and Groups

Our primary estimand is the difference in dispersion of inter-event intervals between condi-
tions. We pre-specify contrasts of interest: Single vs Dominant, Single vs Lesser, and Single
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Figure 2: Representative time-domain signal from a single run. Peaks correspond to nucle-
ation events.

vs Random. Group definitions follow the original pipeline and are retained to respect the
pre-specified analysis.

Furthermore, the Mann–Whitney U tests are performed on the per-run standard devia-
tions (SDs) of inter-event intervals, comparing the distribution of these SDs across groups
rather than testing variances directly.

3.2 Distributional Diagnostics and Tests

We assessed distributional shape via the Shapiro–Wilk test [6] and heterogeneity of variance
via the Brown–Forsythe test (median-centered Levene) [7]. Because several groups deviated
from normality and variances were heterogeneous, we abandoned Welch’s t-test in favor of
the nonparametric Mann–Whitney U test for location comparisons.

All Mann–Whitney U tests [5] were computed using the asymptotic method, which
compares the standardized test statistic against the normal distribution with tie correc-
tion. Additionally, one-sided (upper-tailed) alternatives were specified under the directional
hypothesis that dispersion is greater under concurrent-source conditions.

Cliff’s δ [8] was used to estimate the magnitude and direction of pairwise differences in
dispersion. To quantify uncertainty 95% confidence intervals were obtained via nonparamet-
ric bootstrapping [9]. For each comparison, Cliff’s δ was recalculated across 1,000 bootstrap
iterations, and the empirical 2.5th and 97.5th percentiles of the resulting distribution were
taken as the confidence bounds.

We report exact statistics and p-values as computed under the pre-specified analysis
along with Cliff’s δ. Multiple-comparison adjustments were not applied; we therefore desig-
nate Single vs (Dominant, Lesser, Random) as primary and all other pairwise contrasts as
exploratory.
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3.3 Run Inclusion and Stationarity Considerations

Intervals were computed over entire runs (1 s to 30 s). Short windows can under-sample slow
rhythms; we therefore interpret dispersion estimates conservatively for fast or dominant
rhythms. Because each analyzed segment is an arbitrary excerpt of a longer experiment (the
segment boundaries have no physical meaning), start/end “warm-up/cool-down” detrending
is not applicable. We therefore applied no boundary-based detrending; any within-segment
nonstationarity (slow drift in level or variance) may inflate dispersion and is noted as a
limitation.

All rhythms within an experimental run were required to exhibit at least 5 peaks (yielding
4 inter-event intervals) to ensure stable dispersion estimates. This criterion was satisfied by
every analyzed run, so no subsetting of the original corpus was necessary. Final group sample
sizes (n) are shown below and are consistent across all figures and statistical tables.

Table 1: Sample sizes (n) contributing to each group after applying inclusion criteria.

Group n (runs)

Single 99
Dominant 42
Lesser 42
Random 29

These sample sizes reconcile with the 441-run experimental corpus reported in Section 2
and described in [4]. The original experiment corpus includes six classifications of runs.
For this study we analyzed three classifications, including Single Rhythmic (Single), Double
Rhythmic (Dominant, Lesser), and lastly Rhythmic and Random (Random) runs. These
three classes comprise of 212 of the 441 total runs. The remaining 229 experimental runs and
three categories, which were excluded from analysis, consist of Purely Random, Noise, and
Rhythmic Climax runs. Purely Random runs were excluded because they do not contain a
dominant rhythmic nucleation signal to analyze. Similarly, noise runs were excluded because
they lack any identifiable nucleation signal. Lastly, Rhythmic Climax runs were excluded
because only three examples exist within the corpus, which is insufficient for any meaningful
statistical comparison.

3.4 Blinding and Labeling Protocol

Events were hand-labeled using a custom dashboard under a written guideline specifying
peak identification and merge/split decisions. During labeling, group assignment (e.g., Sin-
gle, Dominant, Lesser, Random) and any downstream statistics were not displayed to the
annotator. All labels were produced by a single trained domain expert blinded to group
assignment; no inter-rater reliability assessment was performed, which we acknowledge as
a limitation. To reduce subjectivity, the same decision rules were applied uniformly across
runs, and ambiguous cases were resolved by rule-based criteria rather than outcome appear-
ance.
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4 Results

4.1 Visual Summaries

Kernel density and violin plots of inter-event interval dispersion show distinct distributional
shapes across groups (Figs. 3 and 4). Qualitatively, Single exhibits a narrower distribution
than concurrent conditions.

Figure 3: Kernel density of standard deviations (SD) of inter-event intervals across groups.

Figure 4: Violin plots of SD distributions across groups.

4.2 Normality and Variance Checks

The Shapiro–Wilk test rejected normality for most groups except Dominant (Table 2). Lev-
ene’s test indicated unequal variances for some contrasts, notably Dominant vs Single (Ta-
ble 3).
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Table 2: Shapiro–Wilk Normality Tests.

Group n Statistic p-value

Dominant 42 0.945 0.215
Lesser 42 0.871 0.005*
Random 29 0.851 <0.001*
Single 99 0.887 <0.001*

Table 3: Levene’s Tests for Equality of Variances.

Group Comparison n (G1, G2) Statistic p-value

Single vs Lesser 99, 42 0.713 0.399
Dominant vs Random 42, 29 0.870 0.357
Dominant vs Lesser 42, 42 2.490 0.122
Dominant vs Single 42, 99 9.840 0.002*

4.3 Primary Nonparametric Comparisons

Directional Mann–Whitney U tests (upper-tail) support greater dispersion under concur-
rency for Single vs Dominant and Single vs Random; Single vs Lesser is also statistically
significant (Table 4). Moreover, Cliff’s δ effect sizes and their respective CI’s support greater
dispersion under concurrency for Single vs Dominant and Single vs Random (Table 5).

Table 4: Upper-tailed: (Concurrency > Single) Mann–Whitney U Tests.

Group Comparison n (G1, G2) U p-value

Dominant vs Lesser 42, 42 234 0.135
Lesser vs Random 42, 29 263 0.092
Single vs Lesser 99, 42 918 0.043*
Single vs Dominant 99, 42 809 0.008*
Single vs Random 99, 29 835 0.001*

Table 5: Cliff’s δ Effect Sizes for Group Comparisons of Dispersion.

Group Comparison n (G1, G2) Cliff’s δ 95% CI

Dominant vs Lesser 42, 42 -0.186 [-0.524, 0.128]
Lesser vs Random 42, 29 -0.221 [-0.521, 0.083]
Single vs Lesser 99, 42 -0.231 [-0.473, 0.014]
Single vs Dominant 99, 42 -0.324 [-0.596, -0.032]
Single vs Random 99, 29 -0.401 [-0.631, -0.170]
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5 Mechanism Background (Qualitative)

The physical mechanism for rhythmic boiling proposed by Khasin et al. [1] provides the
theoretical basis for our hypothesis. Their model describes a thermal-recovery limit cycle:
(i) a bubble nucleates and detaches from a hot spot on the wall; (ii) this detachment allows
cooler bulk liquid to contact the site, locally quenching the temperature; (iii) a ”waiting
time” ensues, governed by thermal diffusion, as the site reheats to the nucleation threshold;
(iv) a new bubble forms, repeating the cycle. The duration of this reheating phase, τ , sets
the fundamental period of the rhythm.

Our study tests a direct consequence of this model. If the rhythm is governed by a sen-
sitive local thermal process, it should be susceptible to external thermal perturbations. We
treat a neighboring detachment event as such a perturbation. The influx of cool liquid from
a nearby event could transiently cool the primary site via diffusion or short-lived convection,
thereby lengthening its recovery time and broadening the overall distribution of inter-event
intervals.

6 Discussion

6.1 Interpretation

We find that concurrent-source conditions are associated with statistically significant in-
creases in the dispersion of inter-event intervals compared to a single rhythmic source. This
result provides strong statistical support for the thermal-recovery limit cycle model proposed
by Khasin et al. [1]. That model predicts the rhythm’s period is set by a sensitive thermal
recovery time. Our findings confirm a key consequence of this model: an external thermal
disturbance—in this case, a neighboring boiling event—perturbs the cycle and measurably
increases its timing irregularity.

With a pre-specified, single-channel analysis, we limit inference to associations rather
than causation. However, the observed distributional differences serve as compelling obser-
vational evidence consistent with the hypothesis that intermittent cooling from neighboring
events acts as phase ”kicks” to a primary rhythm.

6.2 Limitations

(i) Single-channel analysis with amplitude-based within-run identity may misassign events in
rare configurations; we mitigated this by requiring stability of amplitude rank (see Methods).
(ii) Lack of multiplicity correction inflates Type I error across exploratory contrasts; primary
contrasts were pre-specified. (iii) Stationarity was not enforced; warm-up/cool-down may
inflate dispersion.

6.3 Implications for Space Applications

For propellant tank health monitoring, the dispersion of acoustic inter-event intervals may
serve as a conservative indicator of concurrency and evolving thermal instability. Extrapo-
lation to microgravity should account for altered buoyancy and thermal transport [1]; the
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present results are best viewed as context-specific associations that inform sensor fusion
strategies within CFM frameworks.

7 Conclusion

In a hand-labeled acoustic corpus generated by the experiments of Khasin et al. [1], we find
that concurrent boiling sources are associated with greater dispersion of inter-event inter-
vals relative to a single rhythmic source. These distributional differences provide statistical
support for the underlying thermal-recovery mechanism and suggest a potential operational
diagnostic for monitoring complex boiling states. Future work should report nonparametric
effect sizes, adjust for multiplicity, and, where possible, separate sources across channels to
strengthen inference.

8 Data availability

The acoustic, visual, and metadata files used in this study are publicly available through
NASA’s Intelligent Systems Division datasets page under the entry “Acoustic and Visual
Data for Incipient Boiling at Local Heat Leaks in a Water Tank” [10].
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A Applet Screens

Figure 5: Full landing page of the Python Dash app used for manual labeling.
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Figure 6: Example of a manually labeled acoustic run. Peaks are identified and validated
by visual inspection.
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